C-terminal modulation was also present in mouse (V_{0.5act}[mV]: mCa_v1.3₄₂ -4.1 ± 0.4 n=36; mCa_v1.3_{42A} -12.0 ± 0.5 n=25; p<0.0001, Mann-Whitneytest) and indistinguishable from human (V $_{0.5act}[mV]$: hCa $_v1.3_{42}$ -3.9 ± 0.6 n=33; $hCa_v 1.3_{42A} - 11.2 \pm 0.7$ n=12; p<0.0001, Mann-Whitney-test) but was absent in rat. Exon 11, which is only present in rat Ca_v1.3, is not responsible for the difference suggesting single amino acid exchanges in other transmembrane domains or within the N- or C-terminus to account for the species difference. Additionally, we report a new short Ca_v1.3 splice variant (hCa_v1.3_{43S}) identified in human and mouse brain tissue. The voltage-dependence of hCa_v1.3_{43S} I_{Ca} activation and inactivation was significantly shifted to more hyperpolarized potentials $(V_{0.5act}[mV]: hCa_v 1.3S: -12.4 \pm 1.0, n=10, p<0.0001; V_{0.5inact}[mV]:$ $hCa_v 1.3_{42}$: -2.7 ± 0.6 , n=12, p<0.0001, Mann-Whitney-test) and channel inactivation was significantly faster compared to the long form (% inactivation during 250ms at V_{max} : $Ca_v 1.3_{42}$: 63.6 ± 2.4 ; $Ca_v 1.3_{43S}$: 87.0 ± 1.5 ; p<0.0001, Mann-Whitney-test). These gating differences are due to the lack of the DCRD. In contrast to hCa_v1.3_{42A}, hCa_v1.3_{43S} still contains the PCRD. We therefore hypothesize that this short form can be modulated by binding the DCRD domain of adjacent LTCCs or the free C-terminal peptide derived from Ca_v1.2. Support: FWF (P-20670, JS), University of Innsbruck (AK).

3615-Pos

The Regulation of N-Type ($ca_{\nu}2.2$) Voltage-Gated Calcium Channels by $Ca_{\nu}\beta$ Subunit N- and C-terminal Variable Domains

Lele Song, Laura Roberts, Elizabeth Fitzgerald.

Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.

Auxiliary β subunits of voltage-gated calcium channels (Ca_v) promote the trafficking of pore-forming $\alpha 1$ subunits to the plasma membrane (PM) and modulate channel properties.Ca_vβs contain a conserved Src homology 3 (SH3) and guanylate kinase (GK) core, linked by a flexible hook and flanked by variable N-(V1) and C-termini (V3). Structural similarity with membraneassociated GK (MAGUK) proteins suggests that CavBs may act as molecular scaffolds. Thus, the variable N- and C-termini of β subunits may be important for discrete sub-cellular targeting and modulation of Cav signalling as well as channel gating. To address this question, full length CFP-β1b and CFPβ1b constructs lacking the N-terminus (deltaV1), C-terminus (deltaV3),or both (β 1b-core) were co-expressed with Ca_v2.2 α 1/ α 2 δ -1 in COS-7 cells,and their effects on Ca_v2.2 localization, function and modulation by ERK1/2, examined. When expressed alone, CFP-β1b exhibited strong nuclear/cytoplasmic localisation whereas loss of the C-terminus enhanced expression at the PM. Whilst all CFP-β1b constructs facilitated trafficking of Ca_v2.2 to the PM,lower levels of Ca_v2.2 expression occurred with all mutants,suggesting the importance of both N- and C-termini in membrane targeting of Ca_v2.2.In spite of this, Ca_v2.2 current density was uniform for all β1b constructs, implying that not all α1:β complexes at the PM are functional.In contrast to most reports,we observed little influence of N-terminal deletion on the biophysical properties of Ca_v2.2.However,C-terminal deletion enhanced the rate of current activation and reduced channel availability, highlighting a role for this region of β1b in channel gating. Modulation of Ca_v2.2 by ERK1/2, which is dependent on the presence of β subunit, was however unaffected by N-/C-terminal deletion. Together, these findings support a role for the Nand C-terminal variable domains of \$1b in membrane targeting of Ca_v and highlight the importance of the C-terminus of β1b in gating of N-type Ca_v2.2 channels.

This work was founded by BBSRC,MRC and Royal Society.

3616-Pos

Gamma1 Subunit Renders Cav1.2 Channels Dependent on Cell Cycle Anna Angelova, Alexandra Ulyanova, Roman Shirokov.

NJMS-UMDNJ, Newark, NJ, USA.

Auxiliary γ subunits are known to enhance inactivation of L-type calcium channels. When co-expressed in tsA-201 cells with α_{1C} and β_{2a} subunits, the γ_1 subunit shifts the voltage-dependence of inactivation by about -20 mV. The voltage of half-maximal inactivation, $V_{1/2}$, was determined with 5 s long conditioning pre-pulses. On average, addition of γ_1 to α_{1C}/β_{2a} channels changed $V_{1/2}$ from -24 ± 5 mV (n=30) to -44 ± 12 mV (n=92). We noticed that $V_{1/2}$, but not the steepness of the voltage-dependence of inactivation, varies greatly in cells with γ_1 and set up to find the cause of the cell-to-cell variability. Serum starvation and "ER shock" by the N-glycosylation blocker tunicamicin further shifted inactivation to negative voltages. The average $V_{1/2}$ was -59 ± 12 mV (n=12) in serum-free and -69 ± 13 mV(n=32) in tunicamicin treated cells. These treatments altered inactivation only when γ_1 was present

and the effects were similar when β_3 substituted for $\beta_{2a}.$ Mutations of γ_1 that remove consensus N-glycosylation sites had only partial effect (V $_{1/2}=-60\pm18$ mV, n=29) and did not reduce the cell-to-cell variability, indicating that N-glycosylation of γ_1 was not its primary cause.

Serum starvation and tunicamicin are known to produce cell-cycle arrest in the G0/G1 phase and, therefore, could act on γ_1 indirectly by interfering with a cell-cycle dependent pathway. We characterized inactivation in cells expressing fluorescent probes visualizing cell-cycle activity. In support of our hypothesis, $V_{1/2}$ was -55 ± 16 mV, n=32, in G1 and -36 ± 7 mV, n=20, in S/G2/M cells. Therefore, we propose that a novel cell-cycle dependent regulatory pathway controls voltage-dependent inactivation and functional availability of L-type calcium channels in the presence of γ_1 subunit.

The project was supported by MH079406 from NIMH.

3617-Pos

Remodelling Ca^{2+} Responsiveness of $\text{Ca}_v 2.3$ by $\text{Ca}_v b$ Subunits: Role of an N-Terminal Polyacidic Motif

Vicenta Salvador-Recatala, Robert M. Greenberg.

University of Pennsylvania, Philadelphia, PA, USA.

Ca²⁺-dependent inactivation of Ca_v2 channels is highly sensitive to intracellular Ca²⁺ buffers. Therefore, it seems likely that the cytoplasmic Ca²⁺ buffering scenario will have a large impact on the activity of Ca_v2.3 channels, which mediate Ca²⁺ influx associated with medium to slow neurotransmitter release. Using the whole-cell patch-clamp technique, here we show that the kinetics of the fast and slow components of macroscopic inactivation, τ_f and τ_s , of Ca_v2.3 are significantly slower when the cell is dyalized with 0.5 mM EGTA than when is dyalized with a solution containing no intracellular chelators. Rat $Ca_{\nu}\beta_3$ and a $Ca_{\nu}\beta$ subunit from the human parasite *Schistosoma mansoni* ($Ca\beta_{Sm}$) eliminate the sensitivity of τ_{f} , but not of τ_{s} , to 0.5 mM EGTA. Interestingly, $Ca_{v}\beta_{Sm}$ also eliminates the sensitivity of τ_{f} to 5 mM BAPTA, whereas $Ca_{v}\beta_{3}$ does not. Differently from mammalian $Ca_v\beta$'s, $Ca_v\beta_{Sm}$ contains a long N-terminal poly-acidic motif (NPAM). Does this motif interfere with responsiveness of τ_f to BAPTA? Coexpression with a $Ca_v\beta_{Sm}$ subunit without NPAM increased the sensitivity of $\tau_{\rm f}$ to 5 mM BAPTA and enhanced the sensitivity of τ_s to EGTA and BAPTA. Coexpression with a chimaeric $Ca_v\beta_3$ subunit that contains an NPAM suppressed the sensitivity of both τ_f and τ_s to intracellular buffering. Thus, we conclude that presence of NPAM in $\text{Ca}_{\nu}\beta$ subunits reduces or suppresses the sensitivity of Ca_v2.3 inactivation to intracellular chelators. Perhaps NPAMs compete for Ca²⁺ with cellular buffers in the microdomains associated with Ca_v channels. We propose that the NPAM is a built-in buffer within the architecture of the $Ca_{\nu}\beta_{Sm}$ subunit with a function in modulating inactivation of schistosome Cav channels. Recombinant mammalian Cav subunits containing NPAMs could potentially offer a novel therapeutic strategy for diseases associated with enhanced Ca²⁺ entry.

3618-Pos

Oligomerization of $Ca_{\nu}\beta$ Subunits is an Essential Correlate of Ca^{2+} Channel Activity

Qi Zong Lao, Evgeny Kobrinsky, Nikolai Soldatov.

National Institue on Aging, Baltimore, MD, USA.

Voltage gated calcium channels conduct Ca²⁺ ions in response to membrane depolarization. The resulting transient increase in cytoplasmic free calcium concentration is a critical trigger for the initiation of such vital responses as muscle contraction, secretion and transcription. The Ca_v1.2 calcium channel pore is formed by the α_{1C} subunit that is associated with auxiliary $\alpha_2\delta$ and cytosolic Ca_vβ subunits. All four major Ca_vβs share a highly homologous \underline{m} embrane \underline{a} ssociated \underline{gu} anylate \underline{k} inase-like (MAGUK) domain that binds to α_{1C} at the $\underline{\alpha}$ -interaction domain (AID) situated in the linker between transmembrane repeats I and II. In this study we show that Ca_νβ form multimolecular homo- and hetero-oligomeric complexes in human vascular smooth muscle cells expressing native Ca_v1.2 calcium channels and in Cos7 cells expressing recombinant Ca_v1.2 channel subunits. Ca_vβs oligomerize at the α_{1C} subunits residing in the plasma membrane and bind to the AID. However, Ca_vβ oligomerization occurs independently on association with α_{1C} . Molecular structures responsible for $Ca_{\nu}\beta$ oligomerization reside in three regions of the GK module of MAGUK. Augmentation of Ca_vβ oligomerization does not change the voltage-dependence and kinetics of the channel, but significantly increases the current density. Thus, oligomerization of Ca_vβ subunits represents a novel and essential aspect of Ca²⁺ signal transduction.

This work was supported by the NIA Intramural Research Program (Z01 AG000294-08 to NMS).